Total antioxidant capacity of commonly used fruits, vegetables, herbs and spices of Pakistan

Mobasher Ali Abid¹, Muhammad Ashfaq¹, Muhammad Junaid Hassan Sharif¹, Khalid Rauf¹, Wajahat Mahmood¹, Ikarmullah Khan² and Ghulam Abbas³*

¹Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, KPK, Pakistan

Abstract: The current study was aimed at investigating the total antioxidant activity (TAC) of various fruits, vegetables, herbs and spices habitat in Pakistan. The ferric reducing ability of plasma (FRAP) assay was used to measure the TAC of various extracts (aqueous, ethanolic and aqueous-ethanolic). Following is the potency order for fruits (guava >strawberry >Pomegranate >apple >kinnow >melon >lemon >banana), vegetables (spinach >Cabbage (Purple) >Jalapeno >Radish >Brinjal >Bell Pepper >Lettuce >Carrot >Cabbage (White) >Onion >Potato >Tomato >Cucumber) and herbs/spices (clove >Rosemary >Thyme >Oregano >Cinnamon >Cumin >Kalonji >Paprika >Neem (Flower) >Fennel >Black Cardamom >Turmeric >Coriander >Ginger >Garlic). In conclusion, the guava, spinach and clove provide the best natural dietary option for treatment / prevention of oxidative stress and thus could alleviate several associated ailments.

Keywords: Fruits, total antioxidant activity, FRAP assay.

INTRODUCTION

Reactive oxygen species (ROS) are generated within the body through various sources such as mitochondria, prostanoids metabolism. catecholamines. xanthine oxidase and NADPH (nicotinamide adenine dinucleotide phosphate-oxidase) oxidase (Sen et al., 2000). In order to detoxify these ROS, certain antioxidants are also present in the human body such as glutathione, superoxide dismutase, melatonin and lipoic acid (Halliwell, 1996). Oxidative stress is an imbalance between the production and detoxification of ROS by antioxidants, which underlies pathogenesis of various ailments such as hypertension, stroke, atherosclerosis, Alzheimer's, Parkinson, glaucoma, pre-eclampsia and cancer (Valko et al., 2007). In such cases, antioxidant supplementation is often required in order to overcome the situation. However, nutrition can also play a vital role in managing the oxidative stress. In this regard, the commonly used fruits, vegetable, herbs and spices have been reported to possess antioxidant potential. The study compared the antioxidant capacity of commonly used fruits and found strawberry to be the most potent antioxidant (Wang et al., 1996). Another comparative study reported guava to be most effective antioxidant (Lim et al., 2007). The aforementioned literature is also suggestive of differences in antioxidant abilities of fruits of different origin. Similarly, the vegetables are also reported to be rich source of antioxidants (phenolic contents). A study report the following sequence of antioxidant potential of vegetables: shallots >spinach

*Corresponding author: e-mail: ghulam.abbas@hotmail.com

>swamp >cabbage >cabbage >kale (Ismail et al., 2004). Furthermore, the herbs are also rich source of phenolics possessing antioxidant ability. A study compared the antioxidant action of 32 herbs and found E. hirsutum and H. perforatum to be most potent (Wojdyło et al., 2007). Similarly, the protective role of spices against degenerative disorders has long been debated and primarily attributed to their antioxidant potential. These spices are commonly used in South East Asian countries and assumed to underlie the low prevalence of various diseases in this part of the world (Kannappan et al., 2011). For instance, the curcumin was reported to offer protection against amyloid beta induced toxicity (Ono et al., 2004) while cinnamon was found to be effective against tau pathology (Peterson et al., 2009). Furthermore, literature revealed a comparative study on the spices, which exhibited that clove possesses high antioxidant capacity (Shobana and Naidu, 2000). The aforementioned literature revealed that commonly used fruits, vegetables, herbs and spices can offer economical protection against oxidative stress. However, no comprehensive report was found on the literature regarding aforementioned substances from Pakistan, which incited us to undertook present study aimed at exploring the total antioxidant capacity of various commonly used fruits, vegetables, herbs and spices using ferric reducing antioxidant power (FRAP) assay.

MATERIALS AND METHODS

Chemicals

The chemicals used were: Ferric chloride, glacial acetic acid, L-ascorbic acid and sodium acetate (BDH

²Faculty of Pharmacy, Gomal University, DI Khan, KPK, Pakistan

³Pharmacology Section, HEJ Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan

Table 1: Effect of various fruit extracts on total antioxidant activity using FRAP assay

S. No.	Description	FRAP Value (μM/g)			
		Water	Ethanol	Water:EtOH	Average \pm SD
1	Apple	272	416	202	297 ± 109
2	Banana	103	72	86	87 ± 16
3	Guava	1292	768	1124	1061 ± 268
4	Kinnow	187	343	156	229 ± 58
5	Lemon	103	106	118	109 ± 8
6	Melon	214	56	85	118 ± 84
7	Pomegranate	103	569	584	419 ± 273
8	Strawberry	735	1,131	1134	1000 ± 230

Table 2: Effect of various vegetable extracts on total antioxidant activity using FRAP assay

S. No.	Description	FRAP Value (μM/g)			
		Water	Ethanol	Water:EtOH	Average \pm SD
1	Cucumber	18	12	18	16 ± 3
2	Tomato	31	39	40	37 ± 5
3	Potato	40	42	66	49 ± 14
4	Onion	71	139	85	98 ± 36
5	Cabbage (White)	85	147	90	107 ± 34
6	Carrot	98	148	147	131 ± 29
7	Lettuce	103	148	150	134 ± 27
8	Bell Pepper	107	283	196	195 ± 88
9	Brinjal	138	286	223	216 ± 74
10	Radish	147	302	243	231 ± 78
11	Jalapeno	245	516	244	335 ± 157
12	Cabbage (Purple)	312	617	264	398 ± 191
13	Spinach	798	630	822	750 ± 105

chemicals, USA). Hydrochloric acid and ferrous sulphate (RDH chemicals, Gernany). DL- α -tocopherol (Merck, Germany). TPTZ and ethanol (Fluka, USA).

Preparation of sample

The fruits (Apple (Slice with peel), Banana (Edible part slice), Guava (Slice with peel), Kinnow (pulp), Lemon (pulp), Melon (Edible part without peel), Pomegranate (Seeds with pulp) and strawberry (Slice)); vegetables (Bell Pepper (Slice without seeds), Brinjal (Slice with peel), Cabbage (White, Slice of leaf), Cabbage (Purple, Slice of leaf), Carrot (Slice), Cucumber (Slice with peel), Jalapeno (Slice without seeds), Lettuce (Part of leaf), Onion (Slice, outer hard peel removed), Potato (Slice), Radish (Slice), Spinac (Part of leaf) and Tomato (Slice without seeds)) and herbs / spices (Black Cardamom (Seeds and peel), Cinnamon (Bark), Clove (Whole), Coriander (Leaves), Cumin (Seeds), Fennel (Seeds), Garlic (Rhizome without peel), Ginger (Slice without peel), Kalonji (Seeds), Neem (Flower), Oregano (Powder), Paprika (Powder), Rosemary (Dried leaves), Thyme (Powder of Leaves) and Turmeric (Fresh Rhizome slice without peel)) were purchase from the local market. As described above, various parts of the fruits, vegetables and spices were weighed (1.25g) in triplicate and minced. Cold extraction (aqueous, ethanolic and aqueous

ethanolic) was performed by mixing the minced substances in 25 ml of water, ethanol or aqueous/ ethanol (60:40) and shaken. After 30 minutes, centrifugation was performed followed by filtration of extract.

Ferric reducing ability of plasma (FRAP) Assay

The working FRAP reagent was prepared by mixing acetate buffer (300mM, pH= 3.6), TPTZ (2, 4, 6-tripyridyl-s-triazine, 10mM) in HCI and 20mM FeCl₃.6H₂0 (20mM) in the ratio of 10: 1: 1 (Benzie and Strain, 1996). The reagent was mixed with 10 μ l of test sample and absorbance (593 nm) was taken after 4 minutes using Hitachi 2800, Japan. The TAC activity was calculated from ferrous sulfate standard curve.

RESULTS

Effect of aqueous, ethanolic and aqueous ethanolic fruits extracts on total antioxidant capacity

Among various aqueous extracts, Guava exhibited most potent antioxidant activity with average FRAP value of $1292\mu M/g$ (table 1). The Banana, Lemon and Pomegranate showed lowest values of $103~\mu M/g$. Among various ethanolic fruit extracts, the strawberry showed most potent antioxidant activity with FRAP values of $1131\mu M/g$. The melon manifested lowest values of 56

S. No.	Description		FRAP Value (μM/g)				
		Water	Ethanol	Water:EtOH	Average ± SD		
1	Black Cardamom	1,359	877	1,623	1286 ± 378		
2	Cinnamon	6,636	2,962	2,919	4172 ± 2133		
3	Clove	633,315	291,922	86,240	337159 ± 276329		
4	Coriander	468	813	848	710 ± 210		
5	Cumin	2,224	1,954	2,626	2268 ± 338		
6	Fennel	1,613	908	1,669	1397 ± 424		
7	Garlic	80	27	115	74 ± 44		
8	Ginger	428	630	699	586 ± 141		
9	Kalonji	3,802	1,190	1,210	2067 ± 1502		
10	Neem (Flower)	1,194	950	2,422	1522 ± 789		
11	Oregano	4,350	1,690	10,505	5515 ± 4522		
12	Paprika	1,243	1,801	1,724	1589 ± 302		
13	Rosemary	41,342	56,212	60,390	52648 ± 10012		
14	Thyme	36,653	24,429	70,696	43926 ± 23976		
15	Turmeric	446	835	1,913	1065 ± 760		

Table 3: Effect of various herbs and spices on total antioxidant activity using FRAP assay

μM/g (table 2). Among various aqueous ethanolic fruits extracts, the strawberry exhibited most potent antioxidant activity with FRAP values of 1134μM/g (table 2). The melon showed lowest values of 103μM/g (table 1). The potency order for average total antioxidant activity (TAC) exhibited by various fruit extracts is guava >strawberry > Pomegranate >apple >kinnow >melon >lemon >banana. Among all extracts, the aqueous guava extract exhibited the most potent antioxidant activity (1292μM/g) while the melon ethanolic extract showed lowest TAC (56μM/g).

Effect of aqueous, ethanolic and aqueous ethanolic vegetables extracts on total antioxidant capacity

Among various aqueous extract the Spinach exhibited most potent antioxidant activity with average FRAP value of 798µM/g (table 2). The cucumber showed lowest values of 18µM/g. Among various ethanolic extracts, again the spinach showed most potent antioxidant activity with FRAP values of 630µM/g. The cucumber manifested lowest values of 12µM/g. Among various aqueous ethanolic extracts, the spinach exhibited most potent antioxidant activity with FRAP values of 822µM/g. The melon showed lowest values of 18µM/g. The potency order for average total antioxidant activity (TAC) exhibited by various vegetable extracts is spinach >Cabbage (Purple) >Jalapeno >Radish >Brinjal >Bell Pepper >Lettuce >Carrot >Cabbage (White) >Onion >Potato >Tomato >Cucumber. Among all extracts, the aqueous: ethanol spinach extract exhibited the most potent antioxidant activity (822µM/g) while the cucumber ethanolic extract showed lowest TAC (12µM/g).

Effect of aqueous, ethanolic and aqueous ethanolic herbs and spices on total antioxidant capacity

Among various aqueous extract the clove exhibited most potent antioxidant activity with average FRAP value of $633,315\mu\text{M/g}$ (table 3). The garlic showed lowest values

of $80\mu\text{M/g}$. Among various ethanolic extracts, again the clove showed most potent antioxidant activity with FRAP values of $291,922\mu\text{M/g}$. The cucumber manifested lowest values of $27\mu\text{M/g}$. Among various aqueous ethanolic extracts, the clove exhibited most potent antioxidant activity with FRAP values of $86,240\mu\text{M/g}$. The cucumber showed lowest values of $115\mu\text{M/g}$. The potency order for average total antioxidant activity (TAC) exhibited by various herbs / spices extracts is clove > Rosemary >Thyme >Oregano >Cinnamon >Cumin > Kalonji >Paprika >Neem (Flower) >Fennel >Black Cardamom >Turmeric >Coriander >Ginger >Garlic Among all extracts, the aqueous clove extract exhibited the most potent antioxidant activity (633,315 μ M/g) while the garlic ethanolic extract showed lowest TAC (27 μ M/g).

DISCUSSION

The current study was aimed at investigating the total antioxidant activity (FRAP assay) of various commonly used fruit, vegetables, herbs and spices extract (aqueous, ethanol and aqueous-ethanolic) grown in Pakistan. Oxidative stress i.e. imbalance between oxidant and antioxidant in the body underlies pathogenesis of several ailments (Halliwell, 1996). Naturally occurring fruits provide best supplement to normalize the balance in population living in rural areas with limited access to allopathic supplementation. Our data showed that among various fruits, the guava possesses highest average antioxidant activity (1061±154µM/g, table 1). In case of vegetables, spinach appeared to be the most potent antioxidant (750±105µM/g, table 2). In herbs and spices group, the clove displayed most potent antioxidant action (337159±276329µM/g, table 3). Among all the thirty-six samples analyzed for TAC, clove shown the highest value (337159µM/g) and second to it was rosemary.

Our data revealed that the type of solvent for extraction has substantially contributed to the TAC of fruits/ vegetable/herbs and spices. In certain instances, aqueous extract exhibited highest TAC while in other, the major antioxidant moieties were extracted in ethanolic or aqueous ethanolic extracts. This is suggestive of the fact that there is a diversity of constituents, apart from phenolics (Rice-Evans et al., 1997), underlying the antioxidant capacity. Literature also revealed that there is significant effect of type of solvent on the antioxidant action of the substances (Spigno et al., 2007, Sousa et al., 2008). However, further work is required to measure the phenolic contents of the extracts in order to ensure whether the differences observed in TAC is due to diversity of extracted contents or varied concentrations of the phenolics.

Hence, aforementioned dietary substances provide the best natural dietary intervention for treatment / prevention of oxidative stress. These outcomes are especially helpful in remote areas where sufficient quantity of antioxidant supplements cannot be supplied or the acceptance for the natural remedies is high. Additionally, people working in hazardous environment can adopt prophylactic approach by taking these fruits, vegetables, herbs and spices (depending upon the availability) to avoid oxidative stress.

REFERENCES

- Benzie IFF and Strain J (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. *Anal. Biochem.*, **239**: 70-76.
- Halliwell B (1996). Antioxidants in human health and disease. *Ann. Rev. Nutr.*, **16**: 33-50.
- Ismail A, Marjan ZM and Foong CW (2004). Total antioxidant activity and phenolic content in selected vegetables. *Food Chem.*, **87**: 581-586.
- Kannappan R, Gupta SC, Kim JH, Reuter S and Aggarwal BB (2011). Neuroprotection by spice-derived

- nutraceuticals: You are what you eat! *Mol. Neurobiol.*, **44**: 142-159.
- Lim Y, Lim T and Tee J (2007). Antioxidant properties of several tropical fruits: A comparative study. *Food Chem.*, **103**: 1003-1008.
- Ono K, Hasegawa K, Naiki H and Yamada M (2004). Curcumin has potent anti amyloidogenic effects for Alzheimer's β amyloid fibrils *in vitro*. *J. Neurosci*. *Res.*, **75**: 742-750.
- Peterson DW, George RC, Scaramozzino F, Lapointe NE, Anderson RA, Graves DJ and Lew J (2009). Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease *in vitro*. *J. Alzheimer's Dis.*, **17**: 585-597.
- Rice-Evans C, Miller N and Paganga G (1997). Antioxidant properties of phenolic compounds. *Trends Plant Sci.*, **2**: 152-159.
- Sen C, Packer L and Hanninen O (2000). *Handbook of oxidants and antioxidants in exercise*, Elsevier Science.
- Shobana S and Naidu KA (2000). Antioxidant activity of selected Indian spices. *Prostaglandins, Leukot Essent Fatty Acids (PLEFA)*, **62**: 107-110.
- Sousa A, Ferreira IC, Barros L, Bento A and Pereira JA (2008). Effect of solvent and extraction temperatures on the antioxidant potential of traditional stoned table olives alcaparras. *LWT-Food Sci. Technol.*, **41**: 739-745
- Spigno G, Tramelli L and De Faveri DM (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. *J. Food Eng.*, **81**: 200-208.
- Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M and Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. *Int. J. Biochem. Cell. B.*, **39**: 44-84.
- Wang H, Cao G and Prior RL (1996). Total antioxidant capacity of fruits. *J. Agric. Food Chem.*, **44**: 701-705.
- Wojdyło A, Oszmiański J and Czemerys R (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. *Food Chem.*, **105**: 940-949.